
September 2003 www.stsc.hill.af.mil 17

Metrics here, metrics there,
metrics metrics everywhere.
ERA and GPA, MPH and MPG;
LDL and HDL, UCL and LCL,
RPM and RBI, BPS and DPI,
upper limits, lower limits,
in-bounds, out-of-bounds,
on schedule, on budget,
out of scope, out of hope!

Can there be any doubt that metricssur-
round us [1]?  Measurement and met-

rics are foundational for understanding
an engineering process. In the software-
engineering world, the collection of met-
rics has been problematic, yet its need
persists for process improvement and
product quality monitoring. Project
measures that predict cost and schedule
are easier to obtain and are widely used.
However, collecting software defects to
measure quality is more difficult and thus
not as pervasive as other project meas-
ures.

The key measure related to software
quality is, of course, defects. According
to Watts Humphrey, developer of the
Personal Software ProcessSM (PSPSM),
“The defect content of software prod-
ucts must first be managed before other
more important quality issues can be
addressed” [2]. Any organizational claims
that software quality is improving are
unreliable sans defect measures. This
article focuses on the PSP defect man-
agement system, and reveals how a sys-
tematic approach to defect collection and
analysis provides individual engineers
with the ability to remove defects early in
the software development life cycle.

Personal and peer reviews are pri-
mary sources of defect detection. Test
results are another source of defect
detection, albeit a more resource inten-
sive activity. Worse yet, change requests
and trouble reports are evidence of defects
that have made their way to the cus-
tomer. The PSP’s focus on quality soft-

ware products ameliorates the collateral
damage associated with defects discov-
ered by the customer. Despite large
investments in testing strategies, the
average U.S. software defect removal rate
is about 85 percent [3]. These dismal
results are the consequence of using less
disciplined software-engineering prac-
tices that rely on code and test cycles to
remove defects.

Given that software engineers inject
defects, they should be responsible for
identifying and removing them. Our
experience with the PSP, supported by
the Software Engineering Institute (SEI),
indicates that the application of disci-
plined methods such as PSP reduces the
number of defects injected in the
process and the amount of test time
required to detect and remove them.
This reduction is achieved primarily by
lowering the number of defects that are
introduced and secondarily, by removing
defects early in the life cycle rather than
in testing. Using the PSP defect manage-
ment framework, this article will demon-
strate how software engineers can
improve their defect management
process.

The PSP Framework
The PSP framework is a data-driven
feedback system that allows individual
software engineers to continuously

improve their personal processes by
applying statistical process control tech-
niques at the individual level. A PSP
practitioner uses a defined software
process to apply a set of practices to
develop products, while collecting data
as part of the development process.
Figure 1 illustrates how the collected
measurements are used to analyze and
assess the impact of a practice on the
product and/or process using a feedback
loop. This feedback becomes an inherent
part of all future product development
processes. The framework therefore,
offers a road map for collecting data. By
analyzing the data, engineers are able to
modify their practices and thus improve
predictability and quality.

The framework depicted in Figure 1
shows the seven process steps numbered
from PSP0 to PSP3. On the left are the
new practices that are introduced at that
process step. In PSP 1.1 process step, for
example, task planning and scheduling
planning practices are introduced. It is
important to notice that all previous
process steps evolved into the schedule
planning and tracking process of PSP
1.1. In other words, process steps are
evolutionary and cannot be skipped.

A PSP practitioner decides to use one
of these process steps to produce soft-
ware artifacts. The SEI recommends
using practices embodied in PSP 2.1 that

Defect Management Through the 
Personal Software Process

Software quality improvement begins with defect-free software. The Personal Software ProcessSM (PSPSM) defect management
framework provides individual software engineers with the tools to prevent and remove defects early in the life cycle. Our expe-
rience with the PSP indicates that the application of discipline methods such as PSP provides a mechanism for defect pre-
vention as well as early defect removal and substantial reduction in test time. In this article, we describe the PSP defect man-
agement framework and quantitatively demonstrate the reduction of defects by using the PSP defect management methods

Best Practices PSP Processes

Analysis Synthesis

Product
Development

Cyclic Development                    PSP3

Design Templates                    PSP2.1

Code Review/Design Review                   PSP2

Task Planning/Schedule Planning                   PSP1.1

Size Estimating/Test Reporting                   PSP1

Coding Standard/Size Measurement/Process Improvement                 PSP0.1

Time Recording/Defect Tracking/Defect Type Standard                 PSP0

Product

Product Quality

Process Quality

Schedule and Cost

Direct Feedback
Data

Figure 1: The Personal Software Process Framework

SM Personal Software Process and PSP are service marks of
Carnegie Mellon University.

Joe Schofield
Sandia National Laboratories

Iraj Hirmanpour 
AMS, Inc.



Defect Management

18 CROSSTALK The Journal of Defense Software Engineering September 2003

inherits all previous practices. The prod-
uct development process of a PSP prac-
titioner, regardless of which process step
is employed, produces two classes of
output: the project product and a set of
metrics on process and product.
Contrast this approach with the classic
code and test approach that emphasizes
the maturation of the product by remov-
ing defects (or discovering requirements)
during the test phase.

The PSP Defect Management
The goal of any defect management
process is to eliminate defects from soft-
ware products. Unfortunately the prac-
tice often merely tends to reduce defects
[3]. The PSP framework promotes defect
management. While learning and practic-
ing the PSP, engineers are required to
collect and record data on the process
and product during development, includ-
ing defect data. Starting with the first
PSP process step, engineers are intro-
duced to a defect collection method.
Within the PSP, a defect is defined as

anything that will result in failure of soft-
ware to operate, causing rework to cor-
rect it [4]. The defect collection method
consists of establishing a defect classifi-
cation scheme and recording defect
attributes.

For each defect identified, engineers
record the defect type based on the clas-
sification scheme in Table 1, as well as
the following: the injection phase,
removal phase, and correction time [5].
To improve a process, it is necessary to
know the current state of the process. By
writing a program using the first PSP
process step, engineers gain insight into
their process by exploring the question,
“What is my current defect injection/
removal rate?”

This defect collection process contin-
ues until the fifth step of the PSP during
which students would have written seven
programs. Once sufficient defect data are
collected, engineers are required to deter-
mine defect injection and removal rates,
and the associated correction time.
Armed with this information, engineers
produce a design review checklist and a
code review checklist based on their per-
sonal defect profile. A typical defect pro-
file created by PSP defect data is shown
in Figure 2.

Furthermore, the PSP framework
provides a structured review process that
the engineer follows using the checklist
to review his or her work. In the example
data shown in Figure 2, the engineer will
have defect types 50, 20, and 80 on the
checklist because according to personal
data, they are injected most often and
consume the largest repair time. The
fifth process step of the PSP (PSP2)
introduces the design review and code
review activities as part of the process.

The goal is to remove all defects before
compiling and testing.

The PSP review framework consists
of process scripts, checklists, and time
and defect collection forms. The engi-
neer follows the review script that speci-
fies three phases: review, correct, and
check. For each item on the checklist,
engineers review each line of design or
code from beginning to end. Each time a
defect is found it is corrected and its cor-
rectness is verified. Time spent fixing the
defect and the type of defect are record-
ed in the defect log. The PSP review
process, therefore, is a structured and
measured process. The collected review
data includes the time spent in review,
the number of defects found, the time
spent fixing defects, and the number of
lines of design or code reviewed.

From these measures, you can derive
metrics such as lines of code (LOC) per
hour reviewed and defects detected per
hour. During the post-mortem phase of
the project, two additional metrics are
derived called yield and appraisal to failure
ratio (AF/R). Yield is defined as percent
of defects removed before the first com-
pile. AF/R is defined as the ratio of per-
centage of the total time that engineering
spent reviewing a product (appraising)
and percentage of time that engineering
spent compiling and testing a product
(correcting failures). An AF/R ratio of
two reveals that twice as much time was
used to review the product compared to
compiling and testing it.

Data gathered during the PSP class is
then used to assess the quality of the
review and to develop an improvement
strategy. Some of the PSP historical data
suggests that a review rate must be less
than 200 LOC per hour, the yield goal
should be around 80 percent, and the
AF/R should be greater than the number
two.

Unfortunately, the data collected on
current practices of software engineers
indicates that the opposite is true.
Engineers prefer to rush through the
coding phase with little or no design,
minimize reviews, and then correct
defects during the compile/test phase.

The PSP Class Defect Data
As described earlier, PSP students devel-
op 10 programs following progressively
evolving practices using the PSP while
collecting data on their work. The first
seven programs are written using plan-
ning, design, code, compile, test, and
post-mortem as process phases.
Although activities within each phase
grow in sophistication, phases stay the

Defect Types
10 Documentation
20 Syntax
30 Build, Package
40 Assignment
50 Interface
60 Checking
70 Data
80 Function
90 System

100 Environment

Table 1: PSP Defect Types

Defects Removed By Type

0

2

4

6

8

10

12

50 20 80 40 30 10 60 70 90 100

N
um

be
r 

of
 D

ef
ec

ts

Types of Defects

Figure 2: Defect Profile of a PSP Student



Defect Management Through the Personal Software Process

September 2003 www.stsc.hill.af.mil 19

same until program eight, at which time
quantitative management practices are
introduced and two new phases – design
review and code review – are introduced.
The expanded and complete PSP con-
sists of the six process phases listed ear-
lier with an additional review phase fol-
lowing both the design and code phases
respectively.

The first program is written using the
PSP0 process to establish a baseline of
current state. Table 2 shows defect data
for five PSP classes. Students attending
these classes are practicing engineers; all
are college graduates. Fifty percent of
the students have a master’s degree and
an average of 11 years experience. As
depicted in Table 2, the range of defects
varies from 69 to 124 (variation of 55
percent) among classes with an overall
average defect rate of 100 per thousand
lines of code (KLOC). Similarly, the test
defect range varies from 25 to 55 (varia-
tion of 45 percent) for each of the five
classes and contains an average test
defect of 38 defects per KLOC. Data
from PSP classes consistently shows a
wide variation in performance among
software engineers. Variation in defects is
no exception.

These data form the baseline from
which performance improvement is
measured. In addition to helping engi-
neers, this data is also useful to the
organization. If this organization were
suddenly required to estimate defect
injection rate as part of preparing a qual-
ity plan, 100 defects/KLOC would be a
valid estimate based on historic perform-
ance. In lieu of these measures, the
organization is void of quantitatively
determining its defect profile or the
amount of time engineers use to fix the
bugs.

Once all of the defect management
practices are introduced, a sharp drop in
both total defects and test defects is
achieved. As shown in Table 2 in all
classes, the overall average in process
defects improved by 50 percent and
overall average test defect improved by
63 percent. Since testing removes only a
fraction of defects [2], fewer defects dis-
covered in test, while performing similar
levels of defect removal, equates to
fewer defects in the final product.
Measured quality improvements are an
additional benefit of following these
process steps.

The next question is, “Do engineers
who learn and apply PSP in their work
processes produce higher quality prod-
ucts than non-PSP trained engineers?”
To answer the question, three recent

graduates of a PSP class agreed to collect
and share data on their projects based on
the PSP model. They gathered data on
13 small maintenance projects with a
total of 13,914 LOC. As shown in Table
3 on those 13 projects, the total defects
per KLOC were 22 and test defects per
KLOC were reduced to four.

While not a statistically viable study,
the similarity between the results over
five classes and those from 13 actual
projects based on the PSP model rein-
forces the fact that dramatic improve-
ment can be achieved if graduates con-
tinue to follow the PSP process.

Summary and Conclusion
Software quality begins with the removal
or substantial reduction of software
defects before other quality attributes
such as maintainability, portability, relia-
bility, or usability can be considered. A
defect is referred to as anything that caus-
es the software not to function as speci-
fied and requires efforts to correct it.
Needless to say, a major source of soft-
ware defects is missing or incomplete
requirements, which are not addressed in
this article and relate to the requirements
engineering process.

However, once a set of requirements
is agreed upon, the next challenge is to
design and build software that satisfies
the requirements and is defect free, that
is, it functions as specified. Once the
requirements are specified, defects enter
the product during design and coding
phases. Since software engineers are
engaged in the design and coding activi-
ties during which defects are injected,
they should also remove them. The qual-
ity principle of do it right the first time stip-
ulates that these defects be detected and
removed by the engineers while in devel-
opment and not during test or deploy-
ment.

The PSP defect management frame-
work enables software engineers to pre-
vent defects and then to identify and
remove injected defects early to avoid

costly corrections later in the life cycle.
There are two components to defect
management: defect prevention and
defect detection. The PSP defect data
collection system provides the necessary
information to use statistical methods to
identify the root causes of defects and to
develop strategies for preventing defect
injection. The PSP’s structured and meas-
ured review process enables software
engineers to detect and remove defects
early. The measurements taken during the
review are analyzed to improve the effi-
ciency of the review process, thus pro-
viding a continuous improvement mech-
anism.

Our experience with teaching classes
and collecting data on students supports
the notion that as engineers use PSP
defect management practices, their defect
injection rate is reduced substantially
(defect prevention), and defect removal
efficiency (defect detection) is increased
resulting in reduced test and repair time.
Lower costs and higher customer satis-
faction follow naturally.

Metrics abound in the construction of
software, as in other engineering disci-
plines. We have attempted to demon-
strate how the use of metrics, in this case
defect collection and analysis, contributes
to measured improvement in software
quality and a reduction in development
and support time. Addi-tional benefits
accrue to organizations as their software
engineers continue to practice the PSP as
part of their daily activity. The PSP pro-
vides a framework for software process
improvement. Its processes can sustain

Start of
class

End of
class

After
class

Total
Defects/
KLOC

100 50 22

Test
Defects/
KLOC

38 14 4

Table 3: Average Defect Rates

Number of
Students

Defects
Per KLOC

Start

Defect Per
KLOC
End

Test Defect
Per KLOC

Start

Test Defect
Per KLOC

End
Class 1  8  69  40 25 9

Class 2  7  108  28 40 11

Class 3  10  83  24 33 21

Class 4  7  124  74 35 10

Class 5  11  119  83 55 17

Average  100 50 38 14

Table 2: Comparison of Defect Profile at Start and End of the PSP Class



About the Authorsenhanced practices within an organiza-
tion’s software engineering community
long after the class has concluded.◆

References
1. International Function Point Users

Group, et. al. IT Measurement: Pro-
fessional Advice from the Experts.
Addison-Wesley, 17 Apr. 2002: 221.

2. Humphrey, W. S. A Discipline for
Software Engineering. Addison-
Wesley, 1995.

3. Jones, Capers. Software Quality.
International Thomson Computer
Press, 1997: 400.

4. Humphrey, W. S. A Discipline for
Software Engineering. Addison-
Wesley, 1995: 12.

5. Ibid: 44.

Additional Reading
1. Khajenoori, S., and I. Hirmanpour. An

Experiential Report on the Impli-
cations of  Personal Software Process
for Software Quality Improvement.
Proc. of the Fifth International Con-
ference on Software Quality, Austin,
TX, Oct. 1995 <www.sei.cmu.edu/
tsp/recommended-reading.html>.

Defect Management

20 CROSSTALK The Journal of Defense Software Engineering September 2003

Joe Schofield is a tech-
nical staff member at
Sandia National Lab-
oratories, a multi-pro-
gram laboratory operat-
ed by Sandia Corpora-

tion, a Lockheed Martin Company, for
the United States Department of
Energy. He chairs the organization’s
Software Engineering Process Group,
is the Software Quality Assurance
Group leader, and is accountable for
the introduction of the Personal
Software ProcessSM and the Team
Software ProcessSM. He has dozens of
publications and conference presenta-
tions in the software engineering realm
and has taught graduate level software
engineering classes since 1990.

Sandia National Laboratories
MS 0661
Albuquerque, NM 87185
Phone: (505) 844-7977
Fax: (505) 844-2018
E-mail: jrschof@sandia.gov

Iraj Hirmanpour is a
principal of AMS, Inc.,
a software process im-
provement firm and a
Software Engineering
Institute Personal Soft-

ware ProcessSM/Team Software Pro-
cessSM (PSPSM/TSPSM) transition part-
ner. He is a SEI-certified PSP instruc-
tor and TSP launch coach. Hirman-
pour is also a visiting scientist with the
Carnegie Mellon Software Engineering
Institute collaborating on the transi-
tion of PSP and TSP into academic
curricula.

AMS Inc.
421 7th St. NE
Atlanta, GA 30308
Phone: (386) 405-4691
E-mail: ihirman@earthlink.net


